题目内容
下列说法中正确的是( )
A. a是单项式 B. 2πr2的系数是2
C. ﹣ abc的次数是1 D. 多项式9m2﹣5mn﹣17的次数是4
已知水星的半径约为24 400 000米,用科学记数法表示为( )
A. 0.244 × l08米 B. 2.44×106米 C. 2.44×107米 D. 24.4×106米
下列式子中是一元二次方程的是( )
A. xy+2=1 B. (+5)x=0 C. -4x-5 D. =0
如果单项式x2yn+2与单项式ab7的次数相等,则n的值为_________;
某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩( )
A. 不盈不亏 B. 盈利10元 C. 亏损10元 D. 盈利50元
阅读下面材料:
如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
①当x=﹣3或1时,y1=y2;
②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.
下面是他的探究过程,请将(2)、(3)、(4)补充完整:
(1)将不等式按条件进行转化:
当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>;
当x<0时,原不等式可以转化为x2+4x﹣1<;
(2)构造函数,画出图象
设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.
双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(3)确定两个函数图象公共点的横坐标
观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为 ;
(4)借助图象,写出解集
结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为 .
已知二次函数与x轴有交点.
(1)求m的取值范围;
(2)如果该二次函数的图像与x轴的交点分别为(x1,0),(x2,0),且2 x1 x2+ x1+ x2≥20,求m的取值范围.
将y=x2﹣2x+5化成y=a(x﹣h)2+k的形式,则y=__________.
抛物线的对称轴是___________.