题目内容

设抛物线y=x2+(2a+1)x+2a+
5
4
的图象与x轴只有一个交点.
(1)求a的值;
(2)求a18+323a-6的值.
(1)∵抛物线y=x2+(2a+1)x+2a+
5
4
的图象与x轴只有一个交点,
∴△=(2a+1)2-4×1×(2a+
5
4
)
=0,
解得:a=
5
2


(2)∵a=
5
2

∴a是方程x2-x-1=0的根,
∴a2-a-1=0,
∵a≠0,
a-
1
a
=1,
a2+
1
a2

=(a-
1
a
)2
+2
=3,
a4+
1
a4

=(a2+
1
a2
)2
-2
=7,
a8+
1
a8

=(a4+
1
a4
)2
-2
=47,
a12+
1
a12

=(a4+
1
a4
)(a8+
1
a8
-1)
=7×(47-1)
=322,
a18+323a-6
=(a18+
1
a6
)+
322
a6

=a6a12+
1
a12
)+
322
a6

=322a6+
322
a6

=322(a6+
1
a6
),
a6+
1
a6

=(a2+
1
a2
)(a4+
1
a4
-1)
=3×(7-1)
=18.
∴322(a6+
1
a6
)=322×18=5796.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网