题目内容
设抛物线y=x2+(2a+1)x+2a+
的图象与x轴只有一个交点.
(1)求a的值;
(2)求a18+323a-6的值.
| 5 |
| 4 |
(1)求a的值;
(2)求a18+323a-6的值.
(1)∵抛物线y=x2+(2a+1)x+2a+
的图象与x轴只有一个交点,
∴△=(2a+1)2-4×1×(2a+
)=0,
解得:a=
.
(2)∵a=
,
∴a是方程x2-x-1=0的根,
∴a2-a-1=0,
∵a≠0,
∴a-
=1,
a2+
=(a-
)2+2
=3,
a4+
=(a2+
)2-2
=7,
a8+
=(a4+
)2-2
=47,
a12+
=(a4+
)(a8+
-1)
=7×(47-1)
=322,
a18+323a-6
=(a18+
)+
=a6(a12+
)+
=322a6+
=322(a6+
),
a6+
=(a2+
)(a4+
-1)
=3×(7-1)
=18.
∴322(a6+
)=322×18=5796.
| 5 |
| 4 |
∴△=(2a+1)2-4×1×(2a+
| 5 |
| 4 |
解得:a=
1±
| ||
| 2 |
(2)∵a=
1±
| ||
| 2 |
∴a是方程x2-x-1=0的根,
∴a2-a-1=0,
∵a≠0,
∴a-
| 1 |
| a |
a2+
| 1 |
| a2 |
=(a-
| 1 |
| a |
=3,
a4+
| 1 |
| a4 |
=(a2+
| 1 |
| a2 |
=7,
a8+
| 1 |
| a8 |
=(a4+
| 1 |
| a4 |
=47,
a12+
| 1 |
| a12 |
=(a4+
| 1 |
| a4 |
| 1 |
| a8 |
=7×(47-1)
=322,
a18+323a-6
=(a18+
| 1 |
| a6 |
| 322 |
| a6 |
=a6(a12+
| 1 |
| a12 |
| 322 |
| a6 |
=322a6+
| 322 |
| a6 |
=322(a6+
| 1 |
| a6 |
a6+
| 1 |
| a6 |
=(a2+
| 1 |
| a2 |
| 1 |
| a4 |
=3×(7-1)
=18.
∴322(a6+
| 1 |
| a6 |
练习册系列答案
相关题目