题目内容

11.观察下面的变形规律:$\frac{1}{1×2}$=1-$\frac{1}{2}$; $\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$;$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$;…解答下面的问题:
(1)若n为正整数,请你猜想$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$;
(2)证明你的猜想;
(3)利用上面的结论求:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2014×2015}$.

分析 (1)根据所给的等式,进行推而广之即可;
(2)根据分式的加减运算法则进行证明;
(3)根据(2)中证明的结论,进行计算.

解答 (1)解:∵$\frac{1}{1×2}$=1-$\frac{1}{2}$,
$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,
$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,

∴$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$;
故答案是:$\frac{1}{n}$-$\frac{1}{n+1}$;

(2)证明:右边=$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{n+1}{n(n+1)}$-$\frac{n}{n(n+1)}$=$\frac{n+1-n}{n(n+1)}$=$\frac{1}{n(n+1)}$=左边,
所以猜想成立.

(3)原式=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2014}$-$\frac{1}{2015}$=1-$\frac{1}{2015}$=$\frac{2014}{2015}$.

点评 此题考查了分式的加减运算法则,解题的关键是仔细观察,得到规律:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,然后利用规律求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网