题目内容

13.某中学为响应网络教育,计划从市场购买A,B两种型号的电子白板给每个教室装备,经洽谈,购买一块A型电子白板比买一块B型电子白板多用20元.且购买5块A型电子白板和4块B型电子白板共需820元.
(1)购买一块A型电子白板和一块B型电子白板各需多少元?
(2)根据该中学实际需求,需从市场购买A、B两种型号共60块,要求总费用不超过5240元.并且购买A型电子白板的数量应大于购买B种型号电子白板数量的$\frac{1}{2}$.请问,该中学从市场上购买A、B两种型号的电子白板有哪几种方案?

分析 (1)根据题意可以列出相应的方程组,从而可以求得购买一块A型电子白板和一块B型电子白板各需多少元;
(2)根据题意可以写出相应的不等式组,从而可以求得有几种购买方案,并把方案写出来.

解答 解:(1)设购买一块A型电子白板需要x元,一块B型电子白板需要y元,
$\left\{\begin{array}{l}{x=y+20}\\{5x+4y=820}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{x=100}\\{y=80}\end{array}\right.$,
答:购买一块A型电子白板需要100元,一块B型电子白板需要80元;
(2)设购买A型电子白板a块,
$\left\{\begin{array}{l}{100a+80(60-a)≤5240}\\{a>\frac{1}{2}(60-a)}\end{array}\right.$,
解得,20<a≤22,
∴有两种购买方案,
方案一:购买A型电子白板21块,B型电子白板39块,
方案二:购买A型电子白板22块,B型电子白板38块.

点评 本题考查一元一次不等式组的应用、二元一次方程组的应用,解答此类问题的关键是明确题意,列出相应的方程组和不等式组,利用方程的思想和不等式的思想解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网