题目内容

如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.

(1)①∠MPN=

②求证:PM+PN=3a;

(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;

(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.

 

 

(1)①60°,②证明见解析;

(2)证明见解析;

(3)四边形MONG是菱形,理由见解析.

【解析】

试题分析:(1)①运用∠MPN=180°-∠BPM-∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,

(2)连接OE,由△OMA≌△ONE证明,

(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.

试题解析:(1)①∵四边形ABCDEF是正六边形,

∴∠A=∠B=∠C=∠D=∠E=∠F=120°.

又∴PM∥AB,PN∥CD,

∴∠BPM=60°,∠NPC=60°,

∴∠MPN=180°-∠BPM-∠NPC=180°-60°-60°=60°,

故答案为;60°.

②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,

MP+PN=MG+GH+HP+PL+LK+KN.

∵正六边形ABCDEF中,PM∥AB,作PN∥CD,

∵∠AMG=∠BPH=∠CPL=∠DNK=60°,

∵AM=BP,PC=DN,

∴MG+HP+PL+KN=a,GH=LK=a,

∴MP+PN=MG+GH+HP+PL+LK+KN=3a.

(2)如图2,连接OE,

∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,

∴AM=BP=EN,

又∵∠MAO=∠NOE=60°,OA=OE,

在△ONE和△OMA中,

∴△OMA≌△ONE(SAS),

∴OM=ON.

(3)如图3,连接OE,

由(2)得,△OMA≌△ONE,

∴∠MOA=∠EON,

∵EF∥AO,AF∥OE,

∴四边形AOEF是平行四边形,

∴∠AFE=∠AOE=120°,

∴∠MON=120°,

∴∠GON=60°,

∵∠GON=60°-∠EON,∠DON=60°-∠EON,

∴∠GOE=∠DON,

∵OD=OE,∠ODN=∠OEG,

在△GOE和∠DON中,

∴△GOE≌△NOD(ASA),

∴ON=OG,

又∵∠GON=60°,

∴△ONG是等边三角形,

∴ON=NG,

又∵OM=ON,∠MOG=60°,

∴△MOG是等边三角形,

∴MG=GO=MO,

∴MO=ON=NG=MG,

∴四边形MONG是菱形.

考点:四边形综合题.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网