题目内容
设,,……,
(1)写出(n为大于0的自然数)的表达式;
(2)探究是否为8的倍数.
已知a、b满足a2+b2-6a-4b+13=0,则a+b的值是_______.
如图,⊙O是△ABC外接圆,直径AB=12,∠A=2∠B.
(1)∠A= °,∠B= °;
(2)求BC的长(结果用根号表示);
(3)连接OC并延长到点P,使CP=OC,连接PA,画出图形,求证:PA是⊙O的切线.
正十二边形的每一个内角的度数为( )
A. 120° B. 135° C. 150° D. 108°
【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.
例如图可以得到,基于此,请解答下列问题:
(1)根据图2,写出一个代数恒等式: .
(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,= .
(3) 小明同学用图 中x 张边长为a 的正方形, y张边长为b 的正方形,z 张宽、长分别为 a、b 的长方形纸片拼出一个面积为 (2a+b)(a+2b)长方形,则x+y+z=
【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .
如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.
已知是三角形的三边,那么代数式的值( )
A. 大于零 B. 小于零 C. 等于零 D. 不能确定
在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外不相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为_______________.
有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.
(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= 度;
(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;
(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.