题目内容

如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒,连接MN.

(1)若△BMN与△ABC相似,求t的值;

(2)连接AN,CM,若AN⊥CM,求t的值.

(1) △BMN与△ABC相似时,t的值为或;(2) . 【解析】试题分析:(1)、根据Rt△ABC的勾股定理得出AB的长度,然后用含t的代数式分别表示BM、CN和BN的长度,然后根据两种不同的相似得出t的值,得出答案;(2)、过点M作MD⊥CB于点D,从而得出△BDM和△BCA相似,从而求出DM、BD和CD的长度,然后根据垂直得出△CAN和△DCM相似,从而得出t的值. 试题解析:(...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网