题目内容
8、已知正比例函数y=kx (k≠0),当x=-1时,y=-2,则它的图象大致是( )
分析:将x=-1,y=-2代入正比例函数y=kx (k≠0),求出k的值,即可根据正比例函数的性质判断出函数的大致图象.
解答:解:将x=-1,y=-2代入正比例函数y=kx (k≠0)得,
-2=-k,
k=2>0,
∴函数图象过原点和一、三象限,
故选C.
-2=-k,
k=2>0,
∴函数图象过原点和一、三象限,
故选C.
点评:本题考查了正比例函数的图象,要知道正比例函数的图象是过原点的直线,且:当k>0时,图象过一三象限;当k<0时,图象过二、四象限.
练习册系列答案
相关题目
已知正比例函数y=k1x(k1≠0)与反比例函数y=
(k2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( )
| k2 |
| x |
| A、(2,1) |
| B、(-2,-1) |
| C、(-2,1) |
| D、(2,-1) |