题目内容
对任意实数x,多项式x2-6x+11的值是一个( )
分析:根据完全平方公式对多项式配方,然后根据平方数非负数的性质进行判断即可.
解答:解:x2-6x+11=x2-6x+9+2=(x-3)2+2,
∵(x-3)2≥0,
∴(x-3)2+2≥2,
故多项式x2-6x+11的值是一个正数.
故选A.
∵(x-3)2≥0,
∴(x-3)2+2≥2,
故多项式x2-6x+11的值是一个正数.
故选A.
点评:本题考查了完全平方式,根据完全平方公式配成平方数加上一个数的形式是解题的关键.
练习册系列答案
相关题目
对任意实数y,多项式2y2-10y+15的值是一个( )
| A、负数 | B、非负数 | C、正数 | D、无法确定正负 |
对任意实数y,多项式
的值是一个……………………………【 】
| A.负数 | B.非负数 | C.正数 | D.无法确定正负 |