题目内容
有一组数据3、5、7、a、4,如果它们的平均数是5,那么这组数据的方差是______________
2
在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.
【感知】如图①,当点H与点C重合时,可得FG=FD.
【探究】如图②,当点H为边CD上任意一点时, 猜想FG与FD的数量关系,并说明理由.
【应用】在图②中,当DF=3,CE=5时,直接利用探究的结论,求AB的长.
下列命题错误的是【 】
A.对角线互相平分的四边形是平行四边形 B.正方形四条边相等
C .数据1,3,6,1,2,2的众数是2 D.检验航天飞机的零部件是否合格适用全面调查
用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是【 】
A. B. C. D.
如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.
其中正确的序号是 (把你认为正确的都填上).
已知直线y=x+4与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于C。
(1)求直线BC的解析式
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿C-B-A向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围. (3)在(2)的条件下,当t=4秒时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.
关于的方程的解是正数,则的取值范围是 .
下列方程是关于x的一元二次方程的是( )