题目内容
已知一组数据24,25,23,x的平均数是整数,且23<x<28,则这组数据的平均数是 ,标准差是 .
考点:标准差,算术平均数
专题:
分析:根据平均数的计算公式得出18+
x,再根据这组数据的平均数是整数,得出x是4的倍数,再根据23<x<28,求出x的值,求出这组数据的平均数,再根据方差公式求出这组数据的方差,最后根据标准差的定义即可得出答案.
| 1 |
| 4 |
解答:解:∵这组数据的平均数是(24+25+23+x)÷4=18+
x,这组数据的平均数是整数,
∴x是4的倍数,
∵23<x<28,
∴x=24,
∴这组数据的平均数是:18+
x=18+
×24=24;
∴这组数据的方差是:
[(24-24)2+(25-24)2+(23-24)2+(24-24)2]=
,
∴标准差是
=
;
故答案为:24,
.
| 1 |
| 4 |
∴x是4的倍数,
∵23<x<28,
∴x=24,
∴这组数据的平均数是:18+
| 1 |
| 4 |
| 1 |
| 4 |
∴这组数据的方差是:
| 1 |
| 4 |
| 1 |
| 2 |
∴标准差是
|
| ||
| 2 |
故答案为:24,
| ||
| 2 |
点评:此题考查了平均数、方差和标准差,解题的关键是根据平均数公式求出x的值,熟记标准差的定义即方差的算术平方根;注意标准差和方差一样都是非负数.
练习册系列答案
相关题目
函数y=ax+b(a<0,b>0)和y=kx(k>0)的图象交于点P,那么点P关于原点的对称点在( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第死象限 |