题目内容

(本题满分7分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.

(1)求证:AC2=AB·AD;

(2)求证:CE∥AD;

(3)若AD=4, AB=6,求的值.

 

(1)证明见试题解析;(2)证明见试题解析;(3)

【解析】

试题分析:(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD;

(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;

(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.

试题解析:(1)∵AC平分∠DAB,∴∠DAC=∠CAB,

∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;

(2)∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,

∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;

(3)∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,

∵AD=4,∴,∴

考点:1.相似三角形的判定与性质;2.直角三角形斜边上的中线.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网