题目内容
若正多边形的一个外角为60º,则这个正多边形的中心角的度数是( )
A.30° B.60° C.90° D.120°
已知:二次函数与轴交于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程的两个根.
(1)请直接写出点A、B的坐标,并求出该二次函数的解析式。
(2)如图1,在二次函数对称轴上是否存在点P,使的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(3)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合).过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当面积S最大时,求m的值.
如图菱形中,,则菱形的周长为( )
A.20 B.24 C.28 D.40
已知关于的一元二次方程有两个不相等的实数根.
(1)求的取值范围;
(2)若为小于2的整数,且方程的根都是整数,求的值.
写出一个当自变量时,y随x的增大而增大的反比例函数表达式 _____.
一名射击爱好者5次射击的中靶环数依次为:6,7,9,8,9,这5个数据的中位数是( )
A.6 B.7 C.8 D.9
在四边形中,对角线与交于点,是上任意一点,于点,交于点.
(1)如图1,若四边形是正方形,判断与的数量关系;
明明发现,与分别在和中,可以通过证明和全等,得到与的数量关系;请回答:与的数量关系是 .
(2) 如图2,若四边形是菱形, ,请参考明明思考问题的方法,求的值.
如图,已知∠MON =60°,OP是∠MON的角平分线 ,点A是OP上一点,过点A作ON的平行线交OM于点B,AB=4.则直线AB与ON之间的距离是( )
A. B. C. D.
如果不等式的解集是,那么的取值范围是 .