题目内容
已知关于x的一元二次方程x2-2x+m=0,有两个不相等的实数根.
⑴求实数m的最大整数值;
⑵在⑴的条下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.
如图,已知⊙O的弦AB、CD相交于点E,弧AC的度数为60°,弧BD的度数为100°,则∠AEC等于( )
A. 60° B. 100° C. 80° D. 130°
(2016·德州中考)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )
A. 3步 B. 5步 C. 6步 D. 8步
对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中较大的数,如max{2,4}=4.按这个规定,方程max{x,-x}=的解为( )
A. 1- B. 2-
C. 1-或1+ D. 1+或-1
一元二次方程x2﹣x﹣2=0的解是( )
A. x1=﹣1,x2=﹣2
B. x1=1,x2=﹣2
C. x1=1,x2=2
D. x1=﹣1,x2=2
已知m,n是方程x2+2x–5 = 0的两个实数根,则m2–mn+3m+n= .
今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2.设扩大后的正方形绿地边长为x m,下面所列方程正确的是( )
A. x(x-60)="1600"
B. x(x+60)="1600"
C. 60(x+60)="1600"
D. 60(x-60)=1600
如图,CD是Rt△ABC斜边上的高,若AB=5,AC=3,则tan∠BCD=( )
A. B. C. D.
如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= .