题目内容
如图,某校实践活动小组在楼CD的最高点D处,测得楼AE的最高点A的仰角为30°,然后他们从楼CD的底部点C处,又测得楼AE上点B的仰角为10°.已知楼AE与楼CD之间的距离为CE,且AB=CE=30m,求楼CD的高度(结果精确到1m).参考数据:
≈1.73,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18.
在Rt△BEC中,
∴BE=30×tan10°≈30×0.18=5.4,
在Rt△DAF中,
∴
∴EF=AB+BE-AF=30+5.4-17.3=18.1≈18,
∴CD=18米.
答:楼CD的高度为18米.
分析:首先构造直角三角形,在构造的直角三角形中分别利用锐角三角函数值求得AB、BE、AF的长,用AB+BE-AF即可得到CD的长.
点评:本题考查了解直角三角形中的仰俯角问题,解决此类题目的关键是弄清有关的直角三角形中的有关角的度数.
练习册系列答案
相关题目
李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.
调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上(含80分)为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)
调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,
如图.
请你根据以上提供的信息,解答下列问题:
(1)小聪和小亮谁能达到“优秀毕业生”水平哪位同学的毕业成绩更好些?
(2)升入高中后,请你对他俩今后的发展给每人提一条建议;
(3)扇形图中“优秀率”是多少?
(4)“不及格”在扇形图中所占的圆心角是多少度?
(5)请从扇形图中,写出你发现的一个现象并分析其产生的原因.
调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上(含80分)为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)
调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,
| 综合素质 | 考试成绩 | 体育测试 | |
| 满分 | 100 | 100 | 100 |
| 小聪 | 72 | 98 | 60 |
| 小亮 | 90 | 75 | 95 |
(1)小聪和小亮谁能达到“优秀毕业生”水平哪位同学的毕业成绩更好些?
(2)升入高中后,请你对他俩今后的发展给每人提一条建议;
(3)扇形图中“优秀率”是多少?
(4)“不及格”在扇形图中所占的圆心角是多少度?
(5)请从扇形图中,写出你发现的一个现象并分析其产生的原因.
在某校组织的社会实践活动中,小明同学到某超市进行了一项社会调查,发现有一种水果1-6月份售价y(元/kg)与时间t(月)的关系可用一条线段上的点来表示,如图所示,该水果的成本m(元/kg)与时间t(月)满足二次函
数关系,相应的数据如表所示.根据图象提供的信息,解答下列问题:
(1)求售价y(元/kg)与时间t(月)之间的函数关系式.
(2)求表中成本m(元/kg)与时间t(月)之间的函数关系式.
(3)你能求出每千克水果的利润W(元/kg)与时间t(月)之间的函数关系式吗?若该超市在1-6月份每月都销售水果3000kg,请问一个月内最多获利多少元?
(1)求售价y(元/kg)与时间t(月)之间的函数关系式.
(2)求表中成本m(元/kg)与时间t(月)之间的函数关系式.
(3)你能求出每千克水果的利润W(元/kg)与时间t(月)之间的函数关系式吗?若该超市在1-6月份每月都销售水果3000kg,请问一个月内最多获利多少元?
| t(月) | 1 | 2 | 3 | … | ||||
| m(元/kg) |
|
|
3 | … |