ÌâÄ¿ÄÚÈÝ
3£®¹Û²ìÏÂÁÐʽ×Ó£º$\sqrt{1+\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}}$=1$\frac{1}{2}$£¬$\sqrt{1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}}$=1$\frac{1}{6}$£¬$\sqrt{1+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}}$=1$\frac{1}{12}$£¬¡£¬¸ù¾Ý´Ë¹æÂÉ£¬Èô$\sqrt{1+\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}}$=1$\frac{1}{90}$£¬Çó$\sqrt{a-1}$+$\sqrt{2b-2}$µÄÖµ£®·ÖÎö ¸ù¾ÝÒÑÖª¹æÂɵóöab=90ÇÒb=a+1£¬´Ó¶øÇóµÃa¡¢bµÄÖµ£¬´úÈë¼ÆËã¿ÉµÃ£®
½â´ð ½â£º¸ù¾ÝÌâÒâÖªab=90£¬ÇÒb=a+1£¬
¡àa£¨a+1£©=90£¬¼´a2+a-90=0£¬
½âµÃ£ºa=9»òa=-10£¨Éᣩ£¬
µ±a=9ʱ£¬b=10£¬
Ôʽ=$\sqrt{9-1}$+$\sqrt{2¡Á10-2}$
=2$\sqrt{2}$+3$\sqrt{2}$
=5$\sqrt{2}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶þ´Î¸ùʽµÄ»¯¼òÇóÖµ£¬¸ù¾ÝÒÑÖª¹æÂɵóöa¡¢bµÄÖµÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®Îª·½±ãÀÏʦÓë¼Ò³¤µÄÁªÏµ£¬ÍõСÃ÷ͬѧ½«ÀÏʦµÄµç»°ºÅÂë¸æËßÁËĸÇ×£¬ËûĸÇ×Ö»¼ÇסÁËÊÖ»úµç»°ºÅÂëǰ8λµÄ˳Ðò£¬¼ÇµÃºó3λÓÉ7¡¢2¡¢9Èý¸öÊý×é³É£¬µ«Íü¼ÇÁ˾ßÌå˳Ðò£¬ÄÇôÍõСÃ÷ͬѧµÄĸÇ×µÚÒ»´Î¾ÍÄܲ¦Í¨ÀÏʦµç»°µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
| A£® | $\frac{1}{3}$ | B£® | $\frac{1}{6}$ | C£® | $\frac{1}{9}$ | D£® | $\frac{1}{12}$ |
11£®ÒÑÖªÒ»´Îº¯Êýy=-2x+4µÄͼÏó¾¹ýµã£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬ÇÒy1£¼y2£¬ÔòÓУ¨¡¡¡¡£©
| A£® | x1£¾x2 | B£® | x1=x2 | C£® | x1£¼x2 | D£® | ÎÞ·¨È·¶¨ |
8£®ÏÂÁÐͼÐÎÖУ¬ÊÇÖÐÐĶԳÆÍ¼ÐεÄÊÇ£¨¡¡¡¡£©
| A£® | B£® | C£® | D£® |