题目内容
10.| A. | 70° | B. | 80° | C. | 55° | D. | 65° |
分析 根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠PCD=∠P+∠PBC,根据角平分线的定义可得∠PBC=$\frac{1}{2}$∠ABC,∠PCD=$\frac{1}{2}$∠ACD,然后整理得到∠A=2∠P.
解答 解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠PCD=∠P+∠PBC,
∵∠ABC的平分线BP和外角∠ACD的平分线CP相交于点P,
∴∠PBC=$\frac{1}{2}$∠ABC,∠PCD=$\frac{1}{2}$∠ACD,
∴∠P+$\frac{1}{2}$∠ABC=$\frac{1}{2}$(∠A+∠ABC),
∴∠A=2∠P,
∵∠P=35°,
∴∠A=2×35°=70°.
故选:A.
点评 本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,整体思想的利用是解题的关键.
练习册系列答案
相关题目
5.
如图,一次函数y1=-x-1的图象与反比例函数y2=-$\frac{2}{x}$的图象交于A(-2,1),B(1,-2)两点,则使y2>y1的x的取值范围是( )
| A. | -2<x<0或x>1 | B. | x<-2或x>1 | C. | x<-2或x>1 | D. | -2<x<1且x≠0 |