题目内容

9.如图,面积为5的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=$\frac{k}{x}$(x>0)的图象上,已知点B的坐标是(1,3),则k的值为(  )
A.16B.12C.8D.4

分析 过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k的值.

解答 解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,
在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=90°,
∵∠DAF+∠ADF=90°,
∴∠BAE=∠ADF,
在△ABE和△DAF中,
∵$\left\{\begin{array}{l}∠BAE=∠ADF\\∠AEB=∠DFA\\ AB=AD\end{array}\right.$,
∴△ABE≌△DAF(AAS),
∴AF=BE,DF=AE,
∵正方形的面积为5,B(1,3),
∴BE=1,AE=2
∴OF=OE+AE+AF=3+2+1=6,
∴点D的坐标为(2,6),
∵顶点D在反比例函数y=$\frac{k}{x}$(x>0)的图象上,
∴k=xy=2×6=12.
故选B.

点评 本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网