题目内容
10.先化简,再求值:$\frac{1}{x-1}$-$\frac{2}{{x}^{2}-1}$,其中x=2$\sqrt{2}$-1.分析 原式通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.
解答 解:原式=$\frac{x+1-2}{(x+1)(x-1)}$
=$\frac{x-1}{(x+1)(x-1)}$
=$\frac{1}{x+1}$,
当x=2$\sqrt{2}$-1时,原式=$\frac{1}{2\sqrt{2}-1+1}$=$\frac{\sqrt{2}}{4}$.
点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
13.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润不少于750元,且不超过760元,请你通过计算求出该商场所有的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:
按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?
(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润不少于750元,且不超过760元,请你通过计算求出该商场所有的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:
| 打折前一次性购物总金额 | 优惠措施 |
| 不超过300元 | 不优惠 |
| 超过300元且不超过400元 | 售价打九折 |
| 超过400元 | 售价打八折 |