题目内容

将一个两位数的个位数字与十位数字相互交换位置,得到另一个两位数,则这个新两位数与原来两位数的差,一定可以被(  )
A、2整除B、3整除
C、6整除D、11整除
考点:整式的加减,列代数式
专题:
分析:设原来两位数的个位数字为a,十位数字为b,然后根据题意列出新数与原数的差即可得出答案.
解答: 解:设原来两位数的个位数字为a,十位数字为b,
则(10a+b)-(10b+a)=10a+b-10b-a=9a-9b.
所以一定是能被9整除,而9是3的倍数,即一定是能被3整除.
故选B.
点评:本题考查了整式的加减,属于基础题,设出原来两位数的个位数字为a,十位数字为b,然后准确列出新数与原数的差是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网