题目内容

如图,平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).

(1)直接写出点C1的坐标;
(2)在图中画出△A1B1C1
(3)求△AOA1的面积.
考点:作图-平移变换
专题:作图题
分析:(1)根据点P、P1的坐标确定出平移规律,再求出C1的坐标即可;
(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;
(3)利用△AOA1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
解答:解:(1)∵点P(a,b)的对应点为P1(a+6,b-2),
∴平移规律为向右6个单位,向下2个单位,
∴C(-2,0)的对应点C1的坐标为(4,-2);

(2)△A1B1C1如图所示;

(3)△AOA1的面积=6×3-
1
2
×3×3-
1
2
×3×1-
1
2
×6×2,
=18-
9
2
-
3
2
-6,
=18-12,
=6.
点评:本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网