题目内容
已知y1=-2x-3,y2=3x+1:
(1)当x
(2)当x
(3)当x
(1)当x
>-
| 4 |
| 5 |
>-
时,y1<y2;| 4 |
| 5 |
(2)当x
=-
| 4 |
| 5 |
=-
时,y1=y2;| 4 |
| 5 |
(3)当x
<-
| 4 |
| 5 |
<-
时,y1>y2.| 4 |
| 5 |
分析:(1)解不等式-2x-3<3x+1即可求解;
(2)解方程-2x-3=3x+1即可求解;
(3)解不等式-2x-3>3x+1即可求解.
(2)解方程-2x-3=3x+1即可求解;
(3)解不等式-2x-3>3x+1即可求解.
解答:解:(1)∵y1=-2x-3,y2=3x+1,
∴当-2x-3<3x+1,即x>-
时,y1<y2;
(2)∵y1=-2x-3,y2=3x+1,
∴当-2x-3=3x+1,即x=-
时,y1=y2;
(3)∵y1=-2x-3,y2=3x+1,
∴当-2x-3>3x+1,即x<-
时,y1>y2.
故答案为>-
;=-
;<-
.
∴当-2x-3<3x+1,即x>-
| 4 |
| 5 |
(2)∵y1=-2x-3,y2=3x+1,
∴当-2x-3=3x+1,即x=-
| 4 |
| 5 |
(3)∵y1=-2x-3,y2=3x+1,
∴当-2x-3>3x+1,即x<-
| 4 |
| 5 |
故答案为>-
| 4 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
点评:本题考查了一次函数与一元一次不等式、一元一次方程的关系,比较简单.
练习册系列答案
相关题目