题目内容
分析:先根据从热气球C处测得地面A、B两点的俯角分别为30°、45°可求出∠BCD与∠ACD的度数,再由直角三角形的性质求出AD与BD的长,根据AB=AD+BD即可得出结论.
解答:解:∵从热气球C处测得地面A、B两点的俯角分别为30°、45°,
∴∠BCD=90°-45°=45°,∠ACD=90°-30°=60°,
∵CD⊥AB,CD=100米,
∴△BCD是等腰直角三角形,
∴BD=CD=100米,
在Rt△ACD中,
∵CD=100米,∠ACD=60°,
∴AD=CD•tan60°=100×
=100
(米),
∴AB=AD+BD=100
+100=100(
+1)米.
答:AB两点的距离是100(
+1)米.
∴∠BCD=90°-45°=45°,∠ACD=90°-30°=60°,
∵CD⊥AB,CD=100米,
∴△BCD是等腰直角三角形,
∴BD=CD=100米,
在Rt△ACD中,
∵CD=100米,∠ACD=60°,
∴AD=CD•tan60°=100×
| 3 |
| 3 |
∴AB=AD+BD=100
| 3 |
| 3 |
答:AB两点的距离是100(
| 3 |
点评:本题考查的是解直角三角形的应用-仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.
练习册系列答案
相关题目