题目内容

(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(  )
分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.
解答:解:由已知,得∠A=30°,∠B=45°,CD=100,
∵CD⊥AB于点D.
∴在Rt△ACD中,∠CDA=90°,tanA=
CD
AD

∴AD=
CD
tanA
=
100
3
3
=100
3

在Rt△BCD中,∠CDB=90°,∠B=45°
∴DB=CD=100米,
∴AB=AD+DB=100
3
+100=100(
3
+1)米.
故选D.
点评:本题考查了解直角三角形的应用,解决本题的关键是利用CD为直角△ABC斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD与BD的长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网