题目内容
单项式-的系数是 ,次数是_______.
;4
【解析】
试题分析:系数是单项式前面的数字因数即;次数是所有字母的指数的和,所以次数为1+3=4.
考点:单项式.
元旦期间,甲、乙两个家庭到300 km外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h(从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y甲(km)、y乙(km)与时间x(h)之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:
(1)由于汽车发生故障,甲家庭在途中停留了 h;
(2)甲家庭到达风景区共花了多少时间;
(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15 km,请通过计算说明,按图所表示的走法是否符合约定.
菱形的两条对角线长分别为6cm ,8cm,则菱形的面积为 .
(本题共8分,每小题4分)
(1)已知:A=2m2+n2+2m,B=m2-n2-m,求A-2B的值.
(2)先化简,再求值:5a2-[3a-2(2a-1)+4a2],其中a=-.
已知y=2-x,则4x+4y-5的值为_________.
如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为( )
A.2a+5 B.2a+8 C.2a+3 D.2a+2
如图,点D,E分别在AB,BC上,DE∥AC,AF∥BC,∠1=70°,则∠2= .
如果收入200元记作+200元,则-500元表示_______________________.
若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:. 我们把它们称为根与系数关系定理.
如果设二次函数的图象与x轴的两个交点为.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
请你参考以上定理和结论,解答下列问题:
设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形.
(1)当为等腰直角三角形时,求
(2)当为等边三角形时,求的值.
(3)设抛物线与轴的两个交点为、,顶点为,且,试问如何平移此抛物线,才能使?