题目内容
18.解方程组:(1)$\left\{\begin{array}{l}{2x+3y=5}\\{4x-2y=1}\end{array}\right.$;(2)$\left\{\begin{array}{l}{\frac{2(x-y)}{3}=\frac{x+y}{4}-1}\\{3(x+y)=2(2x-y)+8}\end{array}\right.$.
分析 (1)根据加减消元法,可得方程组的解;
(2)根据去分母、去括号、移项合并同类项,可化简方程组,根据代入消元法,可得方程组的解.
解答 解:(1)$\left\{\begin{array}{l}{2x+3y=5①}\\{4x-2y=1②}\end{array}\right.$,
①×2-②,得
8y=9.
解得y=$\frac{9}{8}$,
把y=$\frac{9}{8}$代入②,得
4x-$\frac{9}{4}$=1,
解得x=$\frac{13}{16}$,
方程组的解为$\left\{\begin{array}{l}{x=\frac{9}{8}}\\{y=\frac{13}{16}}\end{array}\right.$;
(2)方程组化简,得
$\left\{\begin{array}{l}{5x-11y+12=0①}\\{x=5y-8②}\end{array}\right.$,
把②代入①,得
14y-28=0,
解得y=2,
把y=2代入②,得
x=2,
方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$.
点评 本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.
练习册系列答案
相关题目
6.若方程组$\left\{\begin{array}{l}{x-2y=3}\\{3x+4y=5}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2.2}\\{y=-0.4}\end{array}\right.$,则方程组$\left\{\begin{array}{l}{(a+2012)-2(b-2013)=3}\\{3(a+2012)+4(b-2013)=5}\end{array}\right.$的解为( )
| A. | $\left\{\begin{array}{l}{a=2.2}\\{b=-0.4}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{a=2014.2}\\{b=2012.6}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{a=-2009.8}\\{b=2012.6}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{a=2014.2}\\{b=2013.4}\end{array}\right.$ |