题目内容
若函数的图象与坐标轴有两个交点,求的值.
如图:已知一次函数y=kx+b(k≠0)的图象与x轴、y轴的交点分别为A、B两点.且与反比例函数y=(m≠0)的图象在第一象限交于点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1.
(1)一次函数和反比例函数的解析式;
(2)求△ACD的面积.
点p(5.﹣3)关于原点对称的点的坐标是( )
A. (3,﹣5) B. (﹣5,﹣3) C. (﹣5,3) D. (﹣3,5)
在2016年我县中小学经典诵读比赛中,10个参赛单位成绩统计如图所示,对于这10个参赛单位的成绩,下列说法中错误的是( )
A. 众数是90 B. 平均数是90 C. 中位数是90 D. 极差是15
若a、b、c都是有理数,那么2a﹣3b+c的相反数是( )
A. 3b﹣2a﹣c B. ﹣3b﹣2a+c C. 3b﹣2a+c D. 3b+2a﹣c
如图所示,已知⊙是的外接圆, 是⊙的直径, 是⊙的弦, ,则__________.
以矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为( )
A. B.
C. D.
计算33°52′+21°54′=__________________.(结果用度分秒表示)
如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,抛物线y=﹣x2+bx+c过A、B两点,点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.
(1)求抛物线的解析式.
(2)求△ABE面积的最大值.
(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求出点D坐标;若不存在,说明理由.