题目内容
化简的结果是( )
A.m+3 B.m﹣3 C. D.
(本题满分10分)如图,在平面直角坐标系中,正方形ABCD和正方形DEFG的边长分别为,点A、D、G在轴上,坐标原点O为AD的中点,抛物线过C、F两点,连接FD并延长交抛物线于点M.
(1)若,求m和b的值;
(2)求的值;
(3)判断以FM为直径的圆与AB所在直线的位置关系,并说明理由.
如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于( )
A. B.2 C.1.5 D.
(7分)(1)化简:(x+2)2+x(x+3)
(2)解不等式组:.
如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是( )
A. B.
C. D.
如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是( )
A. B. C. D.
(本题满分10分)平面直角坐标系中,点的横坐标的绝对值表示为,纵[坐标的绝对值表示为,我们把点的横坐标与纵坐标的绝对值之和叫做点的勾股值,记为:「」,即「」=+,(其中的“+”是四则运算中的加法)
(1)求点,的勾股值「」、「」
(2)点在反比例函数的图像上,且「」=4,求点的坐标;
(3)求满足条件「」=3的所有点围成的图形的面积
﹣3的相反数是 .
列方程或方程组解应用题:
为开阔学生的视野在社会大课堂活动中,某校组织初三年级学生参观科技馆,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.求该校初三年级有学生多少人?原计划租用多少辆45座客车?