题目内容
12.(1)试判断△CED的形状并说明理由;
(2)若AC=5,求BD的长.
分析 (1)根据平行线的性质得到∠AEC=∠ECD,∠BED=∠EDC,等量代换得到∠ECD=∠EDC,即可得到结论;
(2)由E是AB的中点,得到AE=BE,推出△AEC≌△BED,根据全等三角形的性质即可得到结论.
解答 解:(1)△CED是等腰三角形,
∵AB∥CD,
∴∠AEC=∠ECD,∠BED=∠EDC,
∵∠CEA=∠DEB,
∴∠ECD=∠EDC,
∴△CED是等腰三角形;
(2)∵E是AB的中点,
∴AE=BE,
在△AEC与△BED中,
$\left\{\begin{array}{l}{AE=BE}\\{∠AEC=∠BED}\\{CE=DE}\end{array}\right.$,
∴△AEC≌△BED,
∴BD=AC=5.
点评 本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.
练习册系列答案
相关题目