题目内容
如图所示,图①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之间的距离均为15m,B1B5∥A1A5,将抛物线放在图②所示的直角坐标系中.(1)直接写出图②中点B1、B3、B5的坐标;
(2)求图②中抛物线的函数表达式;
(3)求图①中支柱A2B2、A4B4的长度.
分析:(1)由题目中的数据直接写出点的坐标即可;
(2)设出二次函数的交点式,代入点B3的坐标解答即可;
(3)代入B2、B4的横坐标,求出纵坐标,即可解决问题.
(2)设出二次函数的交点式,代入点B3的坐标解答即可;
(3)代入B2、B4的横坐标,求出纵坐标,即可解决问题.
解答:解:(1)B1(-30,0),B3(0,30),B5(30,0);
(2)设抛物线的表达式为y=a(x-30)(x+30),
把B3(0,30)代入得y=a(0-30)(0+30)=30,
解得a=-
,
所求抛物线的表达式为:y=-
(x-30)(x+30);
(3)∵B4点的横坐标为15,
∴B4的纵坐标y4=-
(15-30)(15+30)=
,
∵A3B3=50,拱高为30,
∴立柱A4B4=20+
=
(米);
由对称性知:A2B2=A4B4=
(米).
(2)设抛物线的表达式为y=a(x-30)(x+30),
把B3(0,30)代入得y=a(0-30)(0+30)=30,
解得a=-
| 1 |
| 30 |
所求抛物线的表达式为:y=-
| 1 |
| 30 |
(3)∵B4点的横坐标为15,
∴B4的纵坐标y4=-
| 1 |
| 30 |
| 45 |
| 2 |
∵A3B3=50,拱高为30,
∴立柱A4B4=20+
| 45 |
| 2 |
| 85 |
| 2 |
由对称性知:A2B2=A4B4=
| 85 |
| 2 |
点评:此题考查待定系数法求函数解析式、二次函数的对称性以及利用解析式求点的坐标等问题.
练习册系列答案
相关题目