ÌâÄ¿ÄÚÈÝ
1£®ÔÚ×÷¶þ´Îº¯Êýy1=ax2+bx+cÓëÒ»´Îº¯Êýy2=kx+mµÄͼÏóʱ£¬ÏÈÁгöÏÂ±í£º| x | ¡ | -1 | 0 | 1 | 2 | 3 | 4 | 5 | ¡ |
| y1 | ¡ | 0 | -3 | -4 | -3 | 0 | 5 | 12 | ¡ |
| y2 | ¡ | 0 | 2 | 4 | 6 | 8 | 10 | 12 | ¡ |
£¨1£©¶þ´Îº¯Êýy1=ax2+bx+cµÄͼÏóÓëyÖá½»µã×ø±êΪ£¨0£¬-3£©£»
£¨2£©µ±y1£¾y2ʱ£¬×Ô±äÁ¿xµÄȡֵ·¶Î§ÊÇx£¼-1»òx£¾5£»
£¨3£©Çëд³ö¶þ´Îº¯Êýy1=ax2+bx+cµÄÈýÌõ²»Í¬µÄÐÔÖÊ£®
·ÖÎö £¨1£©Áîx=0£¬ÇóµÃyµÄÊýÖµ£¬È·¶¨ÓëyÖá½»µã×ø±ê¼´¿É£»
£¨2£©ÏÈÀûÓôý¶¨ÏµÊý·¨Çó³ö¶þ´Îº¯ÊýÓëÒ»´Îº¯ÊýµÄ½âÎöʽ£¬Çó³öÁ½º¯ÊýͼÏóµÄ½»µã£¬½ø¶ø¿ÉµÃ³ö½áÂÛ£»
£¨3£©ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ£º¿ª¿Ú·½Ïò£¬¶Ô³ÆÖᣬÔö¼õÐÔÖ±½ÓµÃ³ö´ð°¸¼´¿É£®
½â´ð ½â£º£¨1£©¶þ´Îº¯Êýy1=ax2+bx+cµÄͼÏóÓëyÖá½»µã×ø±êΪ£¨0£¬-3£©£»
£¨2£©ÓÉÌâÒâµÃ£¬
$\left\{\begin{array}{l}{a-b+c=0}\\{c=-3}\\{a+b+c=-4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=1}\\{b=-2}\\{c=-3}\end{array}\right.$£®
¡à¶þ´Îº¯ÊýµÄ½âÎöʽΪy=x2-2x-3=£¨x-1£©2-4£®
¡ßÒ»´Îº¯Êýy2=kx+mµÄͼÏó¹ýµã£¨-1£¬0£©£¬£¨0£¬2£©£¬
¡à$\left\{\begin{array}{l}{-k+m=0}\\{m=2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=2}\\{m=2}\end{array}\right.$£®
¡àÒ»´Îº¯ÊýµÄ½âÎöʽΪy=2x+2£¬
ÈçͼËùʾ£¬![]()
µ±x£¼-1»òx£¾5ʱ£¬¶þ´Îº¯ÊýµÄÖµ´óÓÚÒ»´Îº¯ÊýµÄÖµ£®
£¨3£©¸Ãº¯ÊýµÄͼÏ󿪿ÚÏòÉÏ£»µ±x=1ʱ£¬º¯ÊýÓÐ×î´óÖµ£»µ±x£¼1ʱ£¬yËæxµÄÔö´ó¶ø¼õС£¬µ±x¡Ý1ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£»¶¥µã×ø±êΪ£¨1£¬-4£©£»¶Ô³ÆÖáΪֱÏßx=1£®
µãÆÀ ´ËÌ⿼²é¶þ´Îº¯ÊýµÄÐÔÖÊ£¬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬½áºÏͼÏó£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾öÎÊÌ⣮