题目内容

8.如图,在六边形ABCDEF中,AF∥CD,AB∥DE,且∠A=120°,∠B=80°,则∠C的度数是160°,∠D的度数120°.

分析 连接AC,根据平行线的性质以及三角形的内角和定理,可以求得∠BCD的度数;连接BD,根据平行线的性质和三角形的内角和定理可以求得∠CDE的度数.

解答 解:连接AC.
∵AF∥CD,
∴∠ACD=180°-∠CAF,
又∠ACB=180°-∠B-∠BAC,
∴∠BCD=∠ACD+∠ACB=180°-∠CAF+180°-∠B-∠BAC=360°-120°-80°=160°.
连接BD.
∵AB∥DE,
∴∠BDE=180°-∠ABD.
又∵∠BDC=180°-∠BCD-∠CBD,
∴∠CDE=∠BDC+∠BDE=180°-∠ABD+180°-∠BCD-∠CBD=360°-80°-160°=120°.
故答案为:160°,120°.

点评 考查了多边形内角与外角,平行线的性质,本题需要能够熟练运用平行线的性质和三角形的内角和定理进行求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网