题目内容

如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是 cm.

 

 

8.

【解析】

试题分析:分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为8cm.

试题解析:∵BP、CP分别是∠ABC和∠ACB的角平分线,

∴∠ABP=∠PBD,∠ACP=∠PCE,

∵PD∥AB,PE∥AC,

∴∠ABP=∠BPD,∠ACP=∠CPE,

∴∠PBD=∠BPD,∠PCE=∠CPE,

∴BD=PD,CE=PE,

∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.

考点:1.等腰三角形的判定与性质;2.平行线的性质.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网