题目内容

十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式. 请你观察下列几种简单多面体模型,解答下列问题:

 


(1)  根据上面多面体模型,完成表格中的空格:

多面体

顶点数(V)

面数(F)

棱数(E)

四面体

4

4

长方体

8

6

12

正八面体

8

12

正十二面体

20

12

30

你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是              

(2)正二十面体有12个顶点,那它有           条棱;

(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的顶点数是          

(4)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱. 设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值。

 (1) 6,6,       

V+F-E=2 

(2)30    

(3) 12       

(4) x+y=26  

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网