题目内容

已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D点在∠BAC的平分线上.
分析:首先根据已知条件易证Rt△BDE≌Rt△CDF(AAS),则DE=DF,再由角平分线性质的逆定理可得D在∠BAC的平分线上.
解答:证明:∵CE⊥AB,BF⊥AC,
∴∠BED=∠CFD=90°,
在△BDE和△CDF中,
∠BED=∠CFD=90°
∠BDE=∠CDF
BD=CD 

∴△BDE≌△CDF(AAS),
∴DE=DF,
又∵CE⊥AB,BF⊥AC,
∴D在∠BAC的平分线上.
点评:此题主要考查了全等三角形的判定与性质,角平分线性质的逆定理,首先证明△BDE≌△CDF得出DE=DF是本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网