题目内容

如图1,A.D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.

(1)求A.B两点的坐标;

(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.

解答:解:(1)连接AD,设点A的坐标为(a,0),

由图2知,DO+OA=6cm,

DO=6﹣AO,

由图2知SAOD=4,

DO•AO=4,

∴a2﹣6a+8=0,

解得a=2或a=4,

由图2知,DO>3,

∴AO<3,

∴a=2,

∴A的坐标为(2,0),

D点坐标为(0,4),

在图1中,延长CB交x轴于M,

由图2,知AB=5cm,CB=1cm,

∴MB=3,

∴AM==4.

∴OM=6,

∴B点坐标为(6,3);

(2)显然点P一定在AB上.设点P(x,y),连PC.PO,则

S四边形DPBC=SDPC+SPBC=S五边形OABCD=(S矩形OMCD﹣SABM)=9,

6×(4﹣y)+×1×(6﹣x)=9,

即x+6y=12,

同理,由S四边形DPAO=9可得2x+y=9,

由A(2,0),B(6,3)求得直线AB的函数关系式为y=

[或]

解得x=,y=

∴P(),

设直线PD的函数关系式为y=kx+4,

=k+4,

∴k=﹣

∴直线PD的函数关系式为y=﹣x+4.

点评:此题考查了动点问题的函数图象,解题的关键是根据题意设出函数关系式,是难点,也是中考的重点,需熟练掌握.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网