题目内容
某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量W(台),销售单价x(元)满足W=-2x+80,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?
(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应
将销售单价定位为多少元?
解:
解:(1)y=(x-20)(-2x+80),
=-2x2+120x-1600;
(2)∵y=-2x2+120x-1600,
=-2(x-30)2+200,
∴当x=30元时,最大利润y=200元;
(3)由题意,y=150,
即:-2(x-30)2+200=150,
解得:x1=25,x2=35,
又销售量W=-2x+80随单价x的增大而减小,
所以当x=25时,既能保证销售量大,又可以每天获得150元的利润.
练习册系列答案
相关题目