题目内容
19、某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?
(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?
(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?
分析:(1)用每台的利润乘以销售量得到每天的利润.
(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.
(3)把y=150代入函数,求出对应的x的值,然后根据w与x的关系,舍去不合题意的值.
(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.
(3)把y=150代入函数,求出对应的x的值,然后根据w与x的关系,舍去不合题意的值.
解答:解:(1)y=(x-20)(-2x+80),
=-2x2+120x-1600;
(2)∵y=-2x2+120x-1600,
=-2(x-30)2+200,
∴当x=30元时,最大利润y=200元;
(3)由题意,y=150,
即:-2(x-30)2+200=150,
解得:x1=25,x2=35,
又销售量W=-2x+80随单价x的增大而减小,
所以当x=25时,既能保证销售量大,又可以每天获得150元的利润.
=-2x2+120x-1600;
(2)∵y=-2x2+120x-1600,
=-2(x-30)2+200,
∴当x=30元时,最大利润y=200元;
(3)由题意,y=150,
即:-2(x-30)2+200=150,
解得:x1=25,x2=35,
又销售量W=-2x+80随单价x的增大而减小,
所以当x=25时,既能保证销售量大,又可以每天获得150元的利润.
点评:本题考查的是二次函数的应用,(1)根据题意得到二次函数.(2)利用二次函数的性质求出最大值.(3)由二次函数的值求出x的值.
练习册系列答案
相关题目