题目内容

如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为


  1. A.
    12
  2. B.
    7
  3. C.
    5
  4. D.
    13
D
分析:先根据△BCE等腰直角三角形得出BC的长,进而可得出BD的长,根据△ABD是等腰直角三角形可知AB=BD,在Rt△ABC中利用勾股定理即可求出AC的长.
解答:∵△BCE等腰直角三角形,BE=5,
∴BC=5,
∵CD=17,
∴DB=CD-BE=17-5=12,
∵△ABD是等腰直角三角形,
∴AB=BD=12,
在Rt△ABC中,
∵AB=12,BC=5,
∴AC===13.
故选D.
点评:本题考查的是等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的性质是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网