题目内容
如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为 .
![]()
![]()
5或6 .
【考点】矩形的性质;等腰三角形的判定;勾股定理.
【分析】需要分类讨论:PB=PC和PB=BC两种情况.
【解答】解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.
如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=![]()
AD=3.
在Rt△ABP中,由勾股定理得 PB=![]()
=![]()
=5;
如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.
综上所述,PB的长度是5或6.
故答案为:5或6.
![]()
![]()
练习册系列答案
相关题目
某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有 人.
| 每周课外阅读时间(小时) | 0~1 | 1~2 (不含1) | 2~3 (不含2) | 超过3 |
| 人 数 | 7 | 10 | 14 | 19 |
某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:
| 摸球的次数 | 100 | 200 | 300 | 400 | 500 | 600 |
| 摸到白球的次数 | 58 | 118 | 189 | 237 | 302 | 359 |
| 摸到白球的频率 | 0.58 | 0.59 | 0.63 | 0.593 | 0.604 | 0.598 |
从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)