题目内容

18.如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2$\sqrt{5}$米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)

分析 如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.分别在Rt△EQN、Rt△PFM中解直角三角形即可解决问题.

解答 解:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.

在Rt△QEN中,设EN=x,则EQ=2x,
∵QN2=EN2+QE2
∴20=5x2
∵x>0,
∴x=2,
∴EN=2,EQ=MF=4,
∵MN=3,
∴FQ=EM=1,
在Rt△PFM中,PF=FM•tan60°=4$\sqrt{3}$,
∴PQ=PF+FQ=4$\sqrt{3}$+1.

点评 本题考查了解直角三角形的应用-坡度问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网