题目内容

为了求1+2+22+…+22009的值,可令s=1+2+22+…+22009,则2s=2+22+23+24+…+22010,因此2s-s=22010-1,所以1+2+22+…+22009=22010-1,仿照以上推理计算出1+7+72+73+…72010的值(  )
A.72010-1B.72011-1C.
72010-1
6
D.
72011-1
6
根据题意,设S=1+7+72+73+…72010
则7S=7+72+73+…72011
7S-S=(7+72+73+…72011)-(1+7+72+73+…72010),
=72011-1,
即6S=72011-1,
所以,1+7+72+73+…72010=
72011-1
6

故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网