题目内容

如图,在等腰梯形ABCD中,AB∥CD,AC、BD是对角线,将△ABD沿AB向下翻折到△ABE的位置,试判定四边形AEBC的形状,并证明你的结论.

【答案】分析:要判定四边形AEBC的形状,根据已知条件和旋转的意义可证AE∥BC  AE=BC,所以四边形AEBC是平行四边形.
解答:答:四边形AEBC是平行四边形.
证明:在等腰梯形ABCD中,
∵AD=BC,
∴∠DAB=∠CBA,
∵由翻折变换的性质可知:∠DAB=∠EAB,AD=AE,
∴AE=BC,∠CBA=∠EAB,
∴AE∥BC,
∴四边形AEBC是平行四边形.
点评:本题考查了等腰梯形的性质,旋转的意义,以及平行四边形的判定.平行四边形的判定有多种方法,此处运用了一组对边平行且相等的四边形是平行四边形的定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网