题目内容


在2010年上海世博会期间,某超市在销售中发现:吉祥物﹣“海宝”平均每天可售出20套,每件盈利40元.国庆长假商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每套降价4元,那么平均每天就可多售出8套.要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?


【考点】一元二次方程的应用.

【专题】增长率问题.

【分析】设每套降价x元,那么就多卖出2x套,根据扩大销售量,增加盈利,尽快减少库存,每天在销售吉祥物上盈利1200元,可列方程求解即可.

【解答】解:设每套降价x元,

由题意得:(40﹣x)=1200

即2x2﹣60x+400=0,

∴x2﹣30x+200=0,

∴(x﹣10)(x﹣20)=0,

解之得:x=10或x=20

为了减少库存,所以x=20.

答:每套应降价20元.

【点评】本题考查了一元二次方程的应用,解题的关键是找到关键描述语,找到等量关系,然后准确的列出方程是解决问题的关键.最后要判断所求的解是否符合题意,舍去不合题意的解.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网