题目内容
一个不透明的袋中装有5个黄球、13个黑球和18个红球,它们除颜色外都相同.现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后从袋中摸出一个是黄球的概率不小于,则至少取出了 个黑球.
如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿点A→B方向运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿B→C→D方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为,则与的函数关系的图象是( )
已知如图,A是反比例函数的图像上的一点,AB⊥x轴于点B,且△ABO的面积是3,则
k .
(本小题满分12分)如图,已知二次函数图象的顶点坐标为(2,0),直线y = x+1与二次函数的图象交于A、B两点,其中点A在y轴上.
(1)二次函数的解析式为y = ;
(2)证明点(-m,2m-1)不在(1)中所求的二次函数图象上;
(3)若C为线段AB的中点,过点C做CE⊥x轴于点E,CE与二次函数的图象交于D.
①y轴上存在点K,使K、A、D、C为顶点的四边形是平行四边形,则点K的坐标是 .
②二次函数的图象上是否存在点P,使得三角形 S△ POE=2S △ABD?若存在,求出P坐标,若不存在,请说明理由.
(本小题满分10分,每小题5分)
(1)计算:-∣-5∣+3tan30°-()0
(2)解方程:(x-3)2+2(x-3)=0
如图,为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底B端8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树AB的高度约为( )
A.4.2米 B.4.8米 C.6.4米 D.16.8米
菱形、矩形、正方形都具有的性质是( )
A.对角线相等且互相平分 B.对角线相等且互相垂直平分
C.对角线互相平分 D.四条边相等,四个角相等
关于x的一元二次方程有两个不相等的正实数根,则m的取值范围是( )
A. B.且 C. D.
若二次函数y=x2-6x+c的图象过A(-1,y1)、B(2,y2)、C(3+,y3)三点,则y1、y2、y3的大小关系是__________ .