题目内容

如图,已知△ADE∽△ABC,相似比为1:3,则AF:AG=


  1. A.
    1:3
  2. B.
    3:1
  3. C.
    1:9
  4. D.
    9:1
A
分析:本题可根据相似三角形的性质求解:相似三角形的对应高的比等于相似比.由于△ADE∽△ABC,且AF是△ADE的高,AG是△ABC的高,因此AF、AG的比就等于相似比.
解答:∵△ADE∽△ABC,且相似比为1:3,
又∵AF是△ADE的高,AG是△ABC的高,
∴AF:AG=1:3.
故选A.
点评:本题主要考查了相似三角形的性质:相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网