题目内容
如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为,宽为的大长方形,则需要A类、B类和C类卡片的张数分别为
A. B. C. D.
风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为 .
已知点A(1,-2),若A,B两点关于轴对称,则B点的坐标为______,若点(3,)在函数的图象上,则=_______.
如图,已知直线BC、DE交于O点,OA、OF为射线,平分.
求:的度数.
观察下列各式并找规律,再猜想填空: ,则 ______ .
下列说法错误的是
A. 同位角相等,两直线平行
B. 和已知直线平行的直线有且只有一条
C. 在平面内过一点有且只有一条直线垂直于已知直线
D. 平面内,垂直于同一条直线的两条直线平行
对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:
(1)写出图2中所表示的数学等式 。
(2)根据整式乘法的运算法则,通过计算验证上述等式。
(3)利用(1)中得到的结论,解决下面的问题:
若a+b+c=10,ab+ac+bc=35,则a2+b2+c2= .
(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形z张边长分别为a、b的长方形纸片拼出一个面积为(5a+7b)(9a+4b)长方形,则x+y+z= 。
如图所示,将△ABC沿着某一方向平移一定的距离得到△MNL,则下列结论中正确的有( )
①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。
A. 1个 B. 2个 C. 3个 D. 4个
完成下面的证明(在下面的括号内填上相应的结论或推理的依据):如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,
求证:AD是∠BAC的平分线.
证明:∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°( )
∴AD∥EG( )
∴∠1=∠E( ) ∠2=∠3( )
∵∠E=∠3(已知)
∴( )=( )
∴AD是∠BAC的平分线( )