题目内容
计算:
(1)sin45°﹣2﹣1+(3.14﹣π)0
(2).
一个多边形的每一个外角都是36°,则这个多边形的边数是 .
先化简再求值:(),其中a是方程x2+4x=0的根.
在、、、m+中,分式共有( )
A.1个 B.2个 C.3个 D.4个
如图,已知菱形BEDF,内接于△ABC,点E,D,F分别在AB,AC和BC上.若AB=15cm,BC=12cm,求菱形边长.
有4根细木棒,它们的长度分别是3cm,4cm,5cm,7cm,从中任取3根恰好能搭成一个三角形的概率是 .
如图,A、B、C三点在⊙O上,连接ABCO,若∠AOC=140°,则∠B的度数为( )
A.140° B.120° C.110° D.130°
如图,矩形ABCD的顶点AB在x轴上,点D的坐标为(6,8),点E在边BC上,△CDE沿DE翻折后点C恰好落在x轴上点F处,若△ODF为等腰三角形,点E的坐标为 .
已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.