题目内容
用换元法解方程:时,若令,则原方程可化为关于的方程是 .
如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB, ∠AOC=84°,则∠E等于( )
A.42 ° B.28° C.21° D.20°
(2012•聊城)如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是( )
A.BC=2DE B.△ADE∽△ABC C.= D.S△ABC=3S△ADE
(10分)已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF.
(1)求证:AB=AC;
(2)若AC=3cm,AD=2cm,求DE的长.
如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于 米.
已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为( )
A、1 B、-1、 C、0 D、-2
(本题满分12分)阅读材料:
已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.
∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)r.
∴r=.
(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.
若一元二次方程的一个根为1,则k= .
(本小题满分共8分) 某校政教处倡导“光盘行动”,让同学们珍惜粮食,但发现还是有少数同学们就餐时剩余饭菜较多,为了让同学们理解这次活动的重要性,政教处在某天午餐中,分别按照七、八、九三个年级总人数的同样比例随机调查了三个年级部分同学这餐饭菜的剩余情况,分为三类:A(没有剩余)、B(有少量剩余)、C(剩余一半及以上),并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 名;
(2)八年级被调查的学生共有 名;
(3)通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供8人用一餐.据此估算,该校1000名学生这餐饭菜没有浪费的学生有多少人?这餐浪费的食物可供多少人食用一餐?