题目内容
如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则= .
实践操作:如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).
(1)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆.
(2)综合运用:在你所作的图中,
①AB与⊙O的位置关系是 (直接写出答案);
②若AC=5,BC=12,求⊙O的半径.
如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在运动变化过程中,下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C、E、D、F四点在同一个圆上,且该圆面积最小为4π;⑤DE•DF+CE•CF的值是定值为8,其中正确结论的个数是( )
A.4 B.3 C.2 D.1
如图,∥∥,AB=3,BC=5,DF=12,求DE和EF的长。
若m,n是方程的两个实数根,则的值为 .
已知是方程的一个根,则的值是 .
如图,D是△ABC外一点,E是BC边上一点,∠1=∠2,∠3=∠4.
(1)写出图中两对相似三角形(不得添加字母和线);
(2)请分别说明两对三角形相似的理由.
若式子在实数范围内有意义,则x的取值范围是( )
A.x<1 B.x≥1 C.x≤-1 D.x<-1
小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为( )
A.10米 B.12米 C.15米 D.22.5米